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S U M M A R Y  
The growth and decay of the amplitudes of a thermo-longitudinal coupling wave of arbitrary form are investigated 
theoretically for isotropic linear thermo-elastic materials. As heat conduction law Vernotte's formula is adopted. 
Thomas' compatibility conditions of the second order for a singular surface of arbitrary form are used and the global 
behavior of the amplitude of the wave is analyzed. The geometrical effect of the wave front for the variation of amplitude 
depends upon the path length and the initial values of the mean and Gaussian curvatures. The thermal decay effect for 
the coupling wave is expressed as an exponential function of time and the damping factor is proportional to the thermal 
conductivity. 

1. Introduction 

In the preceding article [1] the author discussed theoretically three-dimensional plane thermo- 
acoustical waves in anisotropic linear thermo-elastic materials, where Vernotte' s heat conduction 
law 

(ti = - 1 ( q i + ~ T  i) (1.1) 

is assumed [2], where q~ and T are, respectively, the heat flux and the temperature and the 
material constants x and z are called, respectively, the conductivity and the relaxation time. 

In this paper the growth and decay of thermo-acoustical waves of arbitrary form in isotropic 
linear thermo-elastic materials are discussed theoretically. 

2. Classification of thermo-acoustical waves 

The constitutive equations of an isotropic linear thermo-elastic material are given by 

aij = 2CSijUk.k + #(Ui, j + Uj.i)--(32 + 2#)C~g)ij(T-- To), (2.1a) 

tl - Uk.k + CV ( T -  To), (2.1b) 
Po 

where aij, t/and Uk are, respectively, the stress tensor, the specific entropy and the displacement 
vector, 2 and # are the Lame elastic constants, c~ is the coefficient of thermal expansion, Cv is 
the specific heat at constant volume, and Po and To denote, respectively, the density and the 
temperature at an equilibrium state. 

aij, j = PO t~i, (2.2) 

qi, i = - Po Toil (2.3) 

denote, respectively, the balances of the linear momentum and of the energy, where vi is the 
velocity of a material particle. 

Differentiating (2.1) with time and eliminating 0 from (2.3) we have 

(hi = 26,jvk,k + l~(v~.~+vj.,)--(32 + 21~)e6,j ~P, (2.4) 

%, = - (32+2#)~ Tov~,k--Oo Tocv T .  (2.5) 
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The thermo-acoustical wave is defined by the singular surface, over which v~, T, aq, t h and 
qi are continuous while their first and second derivatives have jump discontinuities. The 
compatibility conditions of the first order are given by 

[ f . i ] = f n l ,  [ f ] = - U f ,  (2.6) 

where [ f ]  = 0 is assumed and f-= [ f a ]  ni, and where ni and U denote, respectively, the unit 
normal and normal propagation velocity of the wave [3, Chap. 2]. 

Applying (2.6) to (2.4), (2.5), (2.2) and (1.1) and eliminating ~q and ~ we have 

R,~ ar = O, (2.7) 

where the greek suffix runs from one to four and 

a ~ -  (~'1, ~2, f~3, T)  , 

d" - U 2 

0 

[[R~[[ = 0 

0 

0 0 0 

c ~ -  U 2 0 0 

A U  
0 c ~ -  U 2 

To 
A U  • 

0 
To po To'c 

C V U 2 

(2.8) 

(2.9) 

and where n~=(0, 0, 1)is assumed, c T =-(#/po) ~ and c L -  {(2+ 2#)/po) ~ denote, respectively, 
the propagation velocities of the purely mechanical transverse and longitudinal waves, and 

A -= ( 3 ~ + 2 # ) ~ T o / p o .  

From (2.7)-(2.9) we can say that two transverse waves are purely mechanical with constant 
velocity c T while two other coupling waves, called the thermo-longitudinal waves, have constant 
velocities, given by 

o �9 = T - o '  (2.1o) 

and have the amplitude ratio 

a4 To (c 2 - U 2) 
a 3 A U  (2.11) 

The variations of the velocities and of the amplitude ratio of the thermo-longitudinal waves are 
given in [1]. 

3. Surface of arbitrary form 

Consider a surface 2 represented by the form 

xi = qSi (41, r ; t), (3.1) 

where xi are Cartesian coordinates in three-dimensional space, ~l and 4 2 are curvilinear 
coordinates on 2 and t is the time. A vector xi.K=-~4)i/~ K (i= 1, 2, 3) is tangent to the surface 12, 
where the capital latin suffix has the range 1 and 2. The quantities 

g~L -- Xi.K Xi,L (3.2) 

denote the covariant fundamental metric tensor of I2 and contravariant tensor gr r  is defined 
from Or, z by 9 KL OLM = 6KM �9 Useful basic formulae from the theory of surfaces are given here : 

n in  i = 1 , xi,~:ni = 0,  (3.3) 

X~,rL = b K L n i ,  ni, K = - - 9 L M b K L X i , M  , (3.4) 
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9KL bKL = 2f2, (3.5) 

where bKL and f2 are, respectively, the second fundamental form and the mean curvature of 
S. Refer, e.g., to Thomas [4]. 

Thomas [5] proposed the concept of 6 time derivative such that the 6 time derivative of a 
quantity f, expressed as ~f/6t,  means the time derivative o f f  measured by an observer riding 
on the moving surface S(t). Then he derived an interesting relation 

KL (3.6) 
- g U,Kxl,r �9 & 

Four thermo-acoustical waves in homogeneous isotropic linear thermo-elastic material have, 
as prescribed in the preceding section, constant velocities independent of their direction and 
position. Then (3.6) shows that the normal direction of the wave surface is constant along the 
propagation and the family of wave surfaces consist of parallel surfaces. In general the mean and 
Gaussian curvatures of the parallel surface are, respectively, given by 

f2 = f2~  K~ l K = K~ (3.7) 
1-2 f2o l+Ko 12 ' 1 -2 f2o l+Ko 12 ' 

where f2 o and K o denote, respectively, the mean and Gaussian curvatures of a surface from 
which the normal distance 1 is measured [4]. 

Thomas [5 and 3, Chap. 2] derived the compatibility conditions of the second order for the 
jump of a quantity over the singular surface. They are 

[f ,  ij] fni  KL- ~ KL MN b X (3.8a) = nj+9 f,K(niXj,Lq-njXi,L)--J9 9 KMXi,L j,N, 

[/,~] = v f  + n~- U9 X,,Kf,L, (3.8b) 

by (3.8c) [ f ]  = u 2 f  - 2 U ~ ,  

where [ f ]  = 0  and constant U are assumed and f - [ f , i ~ ]  ninj. 

4. Variation of the amplitudes of thermo-acoustieal waves 

Differentiating (2.2) and (2.5) with time and substituting (2.4) and (1.1) into them we have 

(,~ q-,U)Vk, ik q-l.tVi, kk--Po~i--(3J.q- 2#)~ T,i = 0,  (4.1a) 

(32+2#) e Tobk, k + Po Tocv T - - 
T kk -- -- qk,k = O. (4.1b) 

"C ' 72 

Applying the compatibility conditions (3.8) and (2.6) to (4.1), using ~ =  x TnffvT, which is 
derived from (1.1), and referring to relations (3.4) and (3.5), we have 

6a~ 
2 U 6 t  + (cz - cz) 9Kc { (ak Xk,L),r ni + (ak rig),r Xi,L } 

A ~6a4 uoKLxi,Ka4,L } --2f2(CZL--CZT)aknani--2f2cZTai- Too ].-& n i -  

A 
= - ( 4 -  4 )  ~knkn,+(V ~ -  4 ) ~  -- ~ U~n, ,  (4.2a) 

Z t  "k+2OUak"k--Ud"(ak"k'L)'K --2cvUTi- + \ioro  poTo 2 U a, 

)- = __A U~kn k + -- Cv U2 T .  
To po ro z 

(4.2b) 
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4.1. Transverse  wave  

For a transverse wave we have 

aknk = O , a4 = O , U =  cT . (4.3) 

Now multiplying a unit tangent vector t~ on (4.2a) and referring to (4.3) and nk tk = 0, we have 

d@ 
dl - O a T ,  (4.4) 

where aT--ak tk is the amplitude of a transverse wave polarizing along t i and 5/5t  = Ud/d l  is 
used. 

When the formula (3.7) is substituted into (4.4) it may be integrated and we have the global 
variation formula 

aT(O) (4.5) 
a T (l) = (1 - 2(2 o l +  K o 12) ~ '  

where aT (0) is the initial amplitude of aT at l= 0. 

4.2. Thermo- longi tudinal  wave  

For a thermo-longitudinal wave we have 

ak nk =- aa , ak Xk,r = 0 (4.6) 

and the propagation velocity U and the amplitude ratio a4/a a are, respectively, given by (2.10) 
and (2.11). 

Now multiplying n i on (4.2a) and referring to (4.6) and 6 n j & = O ,  we have 

A - 
2 U  ~5a3 _ 2 0 c 2 a a  ToA aa4at - ( V 2 - - c g ) ~ k n k  -- Too U T  . (4.7) 

Multiplying A U / T o  on (4.7) and ( c ~ - U  2) on (4.2b) and summing them side by side we can 
eliminate ~knk and T by (2.10). After some manipulations using (2.11) and 6 / & =  Ud/dl  we can 
obtain a differential equation for a3, that is, 

da 3 

dl 

where 

f12 
2 

is the damping factor and where 

Z (32 q-- 2p)2 ~ 2 

f12 _= (2 + 2 p ) c v z  To ' ,/ _ Po(2 + 2p)Cv " 

Refer to Tokuoka [1]. 
Substituting (3.7) into (4.8) we have the global variation formula 

.(0) ( ) 
a 3 ( l ) = ( 1 _ 2 0  ol+Kol2) ~ e x p  - ~ l  , 

where aa (0) is the initial amplitude of aa at l=  0. 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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5. Discussion 

With respect to the variation of the amplitude of the thermo-acoustical wave we may select, in 
general, three kinds of variation effects, that is, (i) the non-linear effect, (ii) the geometrical 
effect and (iii) the thermal effect. 

When the constitutive equations of a concerned material are non-linear with respect to 
strain and temperature, we may suppose that the differential equation for the variation of wave 
amplitude is, in general, in non-linear. Then the amplitude may grow or decay by means of the 
existence of non-linear terms. This shows the non-linear effect. In this paper we consider linear 
constitutive relations, so there is no such effect. 

When the wave surface is a plane in the initial state, i.e., f2o=K0=0,  we can say from (3.7) 
that it remains a plane wave. So (4.5) and (4.11) reduce to 

(v 1 or(l) = Or(0), a3(l ) = a3(0)ex p ~ l . (5.1) 

Hence the factor (1-2f2 o l+Ko 12) -~ in (4.5) and (4.11) expresses the geometrical effect. 
The non-vanishing damping factor shows the thermal effect. When it vanishes, (4.11) 

reduces to 

a3(O) (5.2) 
a3 (l) = (1 - 2f2 o l+  K o 12) if" 

The damping factor vanishes if fl = 0. From (4.10), fl = 0 indicates that x = 0, i.e., the concerned 
material is a non-conductor. 

For the special case of no thermo-mechanical coupling c~ = A = 0, the thermo-longitudinal 
wave separates into the purely mechanical longitudinal wave and the purely thermal wave. 
From (2.9) their propagation velocities are given, respectively, by 

( 1 31 
U = c L ,  u =  poffoCv4) " 

Then (4.7) and (4.2b) reduce to 

2U ~ -  6a3 - 2f2 c~ a 3 = (U z - CZL)~k nk , (5.4a) 

- 2 c v U  ~ -  + \ p ~ o  ~ a 4 =  Cv U2 T .  (5.4b) 

Therefore for the purely mechanical longitudinal wave we have 

da3 
dl - f2a3' (5.5) 

and for the purely thermal wave we have 

11 d l  - - a , .  ( 5 . 6 )  

Equations (4.4),and (5.5) are identical with Thomas' results for acoustical waves in an isotropic 
linear elastic material [3, Chap. 3]. 

From the above discussions we can say that we have no thermal effect, i.e., v=0  for three 
kinds of waves, that is, the transverse wave, the thermo-longitudinal coupling wave in a non- 
conductor, and the purely mechanical longitudinal wave, which occurs in a material of no thermo- 
mechanical coupling; while we have a non-vanishing thermal effect, i.e., vr for two kinds 
of waves, that is, the thermo-longitudinal coupling wave in a conductor, and the purely thermal 
wave, where v=�89 
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